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Abstract

Questions about the relation between identity and discernibility are important both

in philosophy and in model theory. We show how a philosophical question about identity

and discernibility can be ‘factorized’ into a philosophical question about the adequacy of

a formal language to the description of the world, and a mathematical question about

discernibility in this language. We provide formal definitions of various notions of dis-

cernibility and offer a complete classification of their logical relations. Some new and

surprising facts are proved; for instance, that weak discernibility corresponds to discerni-

bility in a language with constants for every object, and that weak discernibility is the

most discerning non-trivial discernibility relation.

1 Introduction

There has been much debate in philosophy about the relation between identity and distinct-

ness on the one hand, and various forms of discernibility on the other. For instance, philoso-

phers have debated the truth of the Principle of the Identity of Indiscernibles (PII), which is

naturally formulated using a second-order quantifier ranging over some class of properties of

particular philosophical significance:

∀P (Px↔ Py)→ x = y (1)

However, questions about the relation between identity and different forms of discernibility

can also be formulated in the branch of mathematical logic known as model theory. What is
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the relation between these two approaches to such questions? Can the tools of mathematical

logic usefully be brought to bear on the philosophical questions?

This paper has two main aims. Firstly, we show how many of the philosophical questions

about the relation between identity and discernibility can be ‘factorized’ into two components:

a sharper philosophical question about the adequacy of a formal language to the description of

the world, and a mathematically precise question about discernibility in this formal language.

This shows how a mathematical study of the relation between identity and various forms

of discernibility in formal languages can be of philosophical interest. Our second aim is to

undertake this sort of mathematical study, building on work by Ketland [Ketland, 2006],

[Ketland, 2011]. We provide formal definitions of a variety of notions of discernibility and

then break new ground by offering a complete classification of the logical relations between the

resulting forms of discernibility. Some other new and surprising facts are proved as well; for

instance, that weak discernibility corresponds to discernibility in a language with constants

for every object, and that weak discernibility is the most discerning non-trivial discernibility

relation. By contrast, relative discernibility emerges as comparatively unimportant.

2 Philosophical context

The philosophical debate about the relation between identity and discernibility has often

centred on PII. So we begin by clarifying this principle. What is the range of the second-

order quantifier that is used in the above formulation of PII? If the range includes, for each

object in the first-order domain, the property of being identical with that object, then PII

comes out trivially true.1 So attention focuses on whether PII is true when the second-order

quantifier has a more restricted range.

The usual response is to restrict the second-order quantifier to qualitative properties. But

it is hard to define ‘qualitative’. One might try to define a property as ‘qualitative’ just

in case it is not ‘identity-involving’. For instance, being on Earth seems ‘identity-involving’

in a way that being made of iron does not. However, this notion of ‘identity-involving’ is

ambiguous between involving the identity relation and involving some particular object. We

shall return to this issue below, where we consider languages where these two notions of

identity-involving come apart. For now, it will suffice to operate with the intuitive idea that

1In the philosophical literature, the property of being identical with a particular object is known as the
haecceity of that object.
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qualitative properties are observable, either in an everyday sense or in the more idealized

sense in which this notion is used in science.

Why be interested in PII restricted to qualitative properties? One reason is an interest

in the history of philosophy. Leibniz endorsed a particularly strong version of the principle

according to which no two objects can have all the same intrinsic qualitative properties. For

instance, every snowflake differs from every other snowflake in its internal structure. Call two

such objects intrinsically discernible. (A precise definition will be offered below.) However,

objects that are not intrinsically discernible may yet satisfy a form of PII where the variable

P ranges over extrinsic properties.

Secondly, many philosophers (perhaps including Leibniz) are attracted to PII because it

promises to deliver the notion of individuality from metaphysical speculation and make it

amenable to empirical verification. If every object has a unique set of qualitative properties,

then facts about the identity and diversity of objects become fully accessible to empirical

inquiry. If PII is true, we can ask the further question whether this truth is accidental or

necessary. Is there any empirical motivation for the claim that PII is a necessary truth?

For example, it may be extremely unlikely that two distinct snowflakes, or leaves, or rocks,

should be exactly the same with regard to intrinsic qualitative properties. So empiricists

may plausibly argue on inductive grounds for the universal generalisation that no two objects

share all their intrinsic and qualitative properties. However, the empiricist lacks grounds for

the further claim that this universal generalization holds of necessity. Nothing about the way

new snowflakes form is causally related to facts about the exact shape of snowflakes long ago

and miles away. So although the violation of this version of PII may be highly improbable,

it does not appear to be impossible. However, if the principle of impenetrability for classical

particles is assumed to be lawlike, then arguably PII will be necessarily true when the range

of its second-order quantifier includes spatio-temporal properties. Even so, perhaps the best

way for an empiricist to defend the necessity of PII is to construe it as a methodological norm.

The motivation for PII may be the empiricist sentiment that we ought to be able to have

empirical access to individuation.2

A third reason why philosophers are interested in PII arises in connection with the meta-

physical question: ‘What is it that makes an object what it is and not some other object?’.

(An answer to this question is often called a ‘principle of individuation’.) Two traditional

2See, for instance, [Saunders, 2003].
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answers are given by the bundle theory and the idea of transcendent individuality. The for-

mer states that an object is individuated by its qualitative properties. Hence, it is often

thought that the bundle theory requires PII.3 On the other hand, those who deny PII often

use its failure or possible failure to argue that objects must be individuated by something

that transcends their qualitative properties.

Readers may be suspicious of this talk of ‘individuation’ and what ‘grounds’ or ‘deter-

mines’ facts about identity and distinctness. We share these concerns. However, many of the

questions about the relation between identity and diversity on the one hand, and qualitative

facts on the other, admit of more deflationary readings. For instance, we can ask whether the

identity and diversity relations in a given domain are definable in terms of, or are logically

determined by, qualitative properties and relations. These are the sort of ‘sanitized’ questions

that will be investigated here.

Recent discussions of PII have been particularly concerned with quantum mechanics and

mathematical structuralism.4 In both cases, it has been claimed that the putative objects in

question violate PII and hence that some kind of transcendent individuality is required. And in

both cases, a weak form of discernibility has been invoked to deny that PII is violated after all.

Most notably, Simon Saunders [Saunders, 2006] has defended the importance of a distinction,

going back to Quine [Quine, 1976], between three grades of discernibility: absolute, relative,

and weak. The basic ideas are simple (although formal definitions are deferred until Section 5).

We begin by adding a fourth grade: intrinsic.

Two objects are intrinsically discernible when there is an intrinsic property that one

object has that the other lacks. Examples might include snowflakes if they are genuinely

all distinguished by their internal spatial structure. Or people if each has a distinguishing

intrinsic property.

Two objects are absolutely discernible when there is a property that one object has that

the other lacks. Examples include everyday material objects, natural numbers, and classical

particles in a sufficiently asymmetric universe. Note that absolute discernibility does not

3[Russell, 1911] is an early source for this view. It is explicitly defended in [Armstrong, 1980, 91–97]. More
recently it is appealed to by E.J. Lowe [Lowe, 2003, 80], and Hawthorne and Sider [Hawthorne and Sider, 2006,
32] write, “The classic bundle theory is generally thought to preclude the possibility of distinct indiscernible
particulars”. However, it is not clear that the bundle theory requires any form of PII, let alone a strong one.

4See, for instance, [Saunders, 2006], [Muller and Saunders, 2008], [Muller and Seevinck, 2009],
and [Bigaj and Ladyman, 2010] for discussions of PII in quantum mechanics. And see
[Burgess, 1999], [Keränen, 2001], [Ketland, 2006], [MacBride, 2006], [Shapiro, 2006], [Ladyman, 2005],
and [Leitgeb and Ladyman, 2008] for discussions of the principle in mathematical structuralism.

4



require intrinsic discernibility: for example, even if there were two snowflakes not discernible

by means of their intrinsic properties, they may nonetheless be absolutely discernible by an

extrinsic property, such as being more than five miles from each reindeer.

Next, two objects are relatively discernible when there is a two-place relation in which

the first stands to the second but the second does not stand to the first. Examples include

instants of time if time has an intrinsic direction, any two people in a queue, or more generally

the elements of a set equipped with a linear order.

Finally, two objects are weakly discernible when there is a relation in which the first stands

to the second but the first does not stand to itself. Examples famously include Max Black’s

two spheres [Black, 1952], which are weakly discerned by the relation ‘x is two miles from y’;

two fermions in the singlet state of spin, which are weakly discerned by ‘x has opposite spin

to y’; and the complex numbers i and −i, which are weakly discerned by ‘x+ y = 0’.

We call objects that cannot even be weakly discerned utterly indiscernible.5 Bosons are

often thought to be utterly indiscernible,6 and nodes in an edgeless graph provide another

instance of utter indiscernibility [Leitgeb and Ladyman, 2008]. If there are bare particulars,

they will be utterly indiscernible.

It is controversial whether Quine’s generalized forms of discernibility establish that, for

example, fermions and i and −i satisfy PII.7 Indeed, it is controversial whether they should

be called forms of ‘discernibility’ at all. ‘Discerning’ has two broad connotations. The first

is a monadic notion of picking something out as distinct. For instance, one may discern

one’s friend in a large crowd. The second is a dyadic notion of distinguishing or observing the

difference between objects. For instance, one may discern a minute difference between two (so-

called) identical twins. Only the second connotation is compatible with Quine’s generalized

forms of discernibility. However, whether or not weak discernibility is really ‘discernibility’ in

the sense of PII, the terminology has stuck and we will use it here.

Discernibility relations can be compared as to how discerning they are. Say that one

discernibility relation is more discerning than another just in case the following holds: there

are situations in which two objects are discerned by the former but not by the latter; but in

5[Ketland, 2011] calls this notion ‘strong indiscernibility’; we have heard others refer to it as ‘weak
indiscernibility’. We find both labels somewhat confusing and hence adopt ours, which is proposed by
[Caulton and Butterfield, ta]. Ketland uses ‘relative’ and ‘weak discernibility’ in the same sense as we do.
But where we (and other parties to the debate) say ‘absolute discernibility’, he says ‘monadic discernibility’.

6However, see [Muller and Saunders, 2008] for a dissenting view.
7See, for instance, [Hawley, 2009], [MacBride, 2006], [Bigaj and Ladyman, 2010].
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any situation, two objects that are discerned by the latter relation are also discerned by the

former. In a different context, we say the same thing of the palates of two gourmands: one

palate is more discerning than another if the first can tell apart any two flavours that the

second can, while there are flavours that the first can tell apart that the second cannot. It is

well known that weak discernibility is more discerning than absolute discernibility: that is,

in all situations, two objects that are absolutely discernible are also weakly discernible; but

there are situations in which two objects are weakly discernible but not absolutely discernible.

In what follows we develop some logical tools that can be used to analyze the various

discernibility relations that come up in the philosophical discussion. Our aim is thus similar

to that of [Ketland, 2006], [Caulton and Butterfield, ta], and [Ketland, 2011], although many

of our results are (to the best of our knowledge) new. First, we provide a ‘factorization’ of the

traditional philosophical questions about discernibility into a sharper philosophical question

about the adequacy of a formal language to the description of the world and a mathematically

precise question about discernibility in this formal language. Second, we articulate a precise

sense in which weak discernibility is the most discerning nontrivial discernibility relation, thus

for the first time providing an explanation of why this notion that has recently received so

much attention is actually the most important relation to study. Third, we prove that weak

discernibility by relations expressible in a purely qualitative language is capable of discerning

surprisingly many pairs of objects because it is equivalent to weak (as well as to absolute)

discernibility by relations definable in the much richer language that results from adding a

constant for each object of the domain. Weak discernibility by relations definable in a purely

qualitative language is thus equivalent to weak discernibility by relations definable in a lan-

guage that helps itself to singular reference to each of the objects concerned. This highlights

what is at stake in the debate about whether the philosophically important notion is weak

rather than absolute discernibility. Fourth, we provide a complete classification of the logical

relations between a variety of notions of discernibility, not just the four traditional ones men-

tioned above, but also ones arising from considering languages with constants and languages

with an identity predicate. Finally, we establish a curious feature of relative discernibility,

namely that it is the only discernibility relation considered here that is not the complement

of an equivalence relation.
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3 Discernibility in a structure

Questions about discernibility arise both in philosophy and in the branch of mathematical

logic called model theory. Above, we sketched their origin in philosophy. Let us turn now to

model theory, before asking how the two approaches relate to one another.

We will (largely) follow the terminology and notation of [Hodges, 1997]. A structure

consists of: (i) a domain, which is a set of objects; (ii) a collection of distinguished elements

from the domain, which we call the constant elements; (iii) for each n, a collection of n-

ary relations on the domain; (iv) for each n, a collection of n-ary functions on the domain.

Each structure comes equipped with a signature, which contains a constant for each constant

element, a relation symbol for each relation, and a function symbol for each function.

A structure A, together with its associated signature, uniquely determines four different

sorts of language that will interest us in this paper.8 First, a first-order language without the

identity symbol, which we denote LA. LA consists of the set of first-order formulae without

identity whose constants, relation symbols, and function symbols are amongst those in the

signature. Second, a first-order language with identity, which we denote L=A. The third and

fourth languages are determined in the same way by a structure that is closely related to A.

It is the structure obtained from A by letting every element of the domain of A be a constant

element, and expanding the signature to include a constant for each of the new constant

elements. We call this structure A∗ and we denote the corresponding first-order languages

with and without identity LA∗ and L=A∗ respectively.

Next, satisfaction. If ϕ(x1, ..., xn) is a formula of LA with free variables x1, ..., xn, and

a1, ..., an are elements of the domain of A, we write A |= ϕ(x1, ..., xn)[a1, ..., an] to mean

that ϕ(x1, ..., xn) is satisfied by the structure A when each free variable xi is assigned ai.

Sometimes, when there is no risk of confusion, we instead write A |= ϕ(a1, ..., an). And

similarly for the languages L=A, LA∗ , and L=A∗ .

With this in hand, we can give model-theoretic definitions of the grades of discernibility

introduced informally above. It is crucial to note that these grades of discernibility are defined

relative to a structure A and a language L, where L is LA, L=A, LA∗ , or L=A∗ . It is also worth

noting here that each of these languages contain only first-order formulae. Of course, it is

possible to define the grades of discernibility relative to other languages, which perhaps permit

higher-order quantification or infinite conjunctions and disjunction. We could then explore

8Of course, the mapping from structures to associated languages will be many-one.
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the consequences. But we leave this for another time.

We define the grades of discernibility in A relative to LA. The definitions of discernibility

in A relative to L=A, and discernibility in A∗ relative to LA∗ and L=A∗ , are analogous.

Definition 1 (Grades of Discernibility) Suppose A is a structure and a and b are ele-

ments of its domain. Then

(a) a and b are intrinsically discernible in A (written IntA(a, b)) if there is ϕ(x) in LA such

that ϕ does not contain any quantifiers or any constants and A |= ϕ(a) but A 6|= ϕ(b).

(b) a and b are absolutely discernible in A (written AbsA(a, b)) if there is ϕ(x) in LA such

that A |= ϕ(a) but A 6|= ϕ(b).

(c) a and b are relatively discernible in A (written RelA(a, b)) if there is ϕ(x, y) in LA such

that A |= ϕ(a, b) but A 6|= ϕ(b, a).

(d) a and b are weakly discernible in A (written WeakA(a, b)) if there is ϕ(x, y) in LA such

that A |= ϕ(a, b) but A 6|= ϕ(a, a).

(e) a and b are distinct in A (written DisA(a, b)) if A |= a 6= b.

We write Int=A for intrinsic discernibility in A relative to L=A, and similarly for Abs=A, Rel=A

and Weak=
A. We write IntA∗ and Int=A∗ for intrinsic discernibility in A∗ relative to LA∗ and

L=A∗ respectively, and similarly for the other discernibility relations.

Some gloss for Definition 1 was provided in Section 2, along with examples. A property

of an object is often said to be intrinsic to it if the existence and nature of other objects is

counterfactually irrelevant to the object having the property. For this reason, we restrict to

formulae without quantifiers in (a).9 It is plausible that Leibniz meant to restrict the second-

order quantifier in PII to such intrinsic properties. And, so restricted, the principle seems to

be true of people and everyday objects. However, when we consider classical particles of the

same kind, we seem to have examples of distinct objects that are nonetheless not intrinsically

discernible. This motivates the relation of absolute discernibility. And similarly, apparent

counterexamples to PII when restricted to intrinsic and extrinsic properties motivate the

relations of relative and weak discernibility.

In sum: given two objects a and b in a given structure A, we can ask whether they are

discernible in A relative to either LA or L=A, or in A∗ relative to either LA∗ or L=A∗ . In

9The idea is due to [Caulton and Butterfield, ta].
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Section 7, we provide an exhaustive account of the relations between the different grades of

discernibility relative to these different languages.

4 Discernibility in philosophy and in model theory

When investigating questions about discernibility amongst a given collection of objects,

philosophers are typically interested in some restricted class C of properties of those objects

and relations amongst them. For instance, empiricists are concerned with so-called quali-

tative properties, whereas metaphysicians are interested in some class of basic metaphysical

properties. What is the relation between the questions about discernibility as they appear in

philosophy and as they appear in model theory? Take the class of objects in question. Let

it be the domain of a structure A. Then the relation between the notions of discernibility in

model theory and in philosophy will depend on how the relations on the domain of A that

can be defined by formulae in L compare with the relations in C, where L is LA, L=A, LA∗ ,

or L=A∗ . Let us say:

• L is expressively sound with respect to C if every relation that is definable by a formula

in L is in C.

• L is expressively complete with respect to C if every relation in C is definable by a

formula in L.

Examples of languages that are expressively unsound (with respect to appropriate C): If

C does not include haecceities for any of the objects in question, then a language in which

any can be defined is unsound with respect to C. Similarly, a language in which we can define

properties or relations corresponding to purely mathematical predicates in the language of

quantum mechanics might be thought unsound if there is a methodological stricture to use

only physically meaningful properties, as in [Muller and Saunders, 2008].10

Examples of languages that are expressively incomplete (with respect to appropriate C):

Any language that fails to define basic physical properties will typically be thought incomplete.

Also, if each object does have a haecceity, then languages that cannot define these will be

incomplete.

10One small observation here: If the class C is not closed under the logical operations of conjunction,
disjunction, negation, and quantification, then no language can hope to be expressively sound with respect to
C.
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We say that a language L is expressively adequate iff it is expressively sound and com-

plete. This follows usage in model theory. Note that the notion of adequacy here means not

satisfactory but rather optimal, perfect, or just right.

Clearly, philosophers disagree about what languages are expressively adequate. Most if not

all empiricists will think that a language with predicates for haecceities is unsound, whereas

some metaphysicians may think that languages without such predicates are incomplete.11

Empiricists may consider a language that refers to all the qualitative properties of things as

adequate, whereas others will insist on predicates for all metaphysically fundamental features

of the world.

If the language L is expressively sound with respect to C, then the logical notion of a

particular grade of discernibility with respect to L entails the philosophical notion of the

corresponding grade of discernibility by properties and relations in C. If, on the other hand,

L is expressively complete with respect to C, then the logical notion of some grade of indis-

cernibility with respect to L entails the philosophical notion of the corresponding grade of

indiscernibility by properties and relations in C. Putting these two observations together,

it follows that if the language L is both expressively sound and complete, each logical no-

tion of discernibility relative to L is equivalent to the corresponding philosophical notion of

discernibility by properties and relations in C.

In this paper we do not take a stand on the class C of properties and relations that may

discern two objects. We leave this open and investigate instead various forms of discerni-

bility in a structure relative to a language L. Once a class C is specified, the question of

the expressive soundness and completeness of L can be addressed, and our results about dis-

cernibility relative to L can be translated into results about discernibility with respect to C,

as explained above. Our investigation is thus a way of giving precise mathematical content

to the original philosophical questions, relative to a choice of the class C. In this way, the

original philosophical question ‘factorizes’ into a philosophical question about the class C,

and a mathematical question about discernibility relative to L.

It is important to realize that model theory itself is neutral on the relation between

identity and discernibility. A structure is just a mathematical object composed of a domain

along with distinguished elements of the domain, distinguished functions and relations on

it. Model theory makes no requirement whatsoever concerning the objects on which the

11See [Ketland, 2006, 313-4] for a technical discussion of the relation between haecceities and indiscernibility
in a second-order language.
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structure is based. For nearly every structure considered in this article, the elements of its

domain can be taken from amongst the natural numbers; and all of the natural numbers

are absolutely discernible in the natural number structure and are thus compatible with

the strictest form of PII. However, using these absolutely discernible ‘building blocks’, we

can construct structures in which PII is violated, which will later enable a more informed

assessment of whether situations corresponding to these structures are genuinely possible.

Here it is essential to distinguish between the discernibility of the objects on which the

structure is based (e.g. the natural numbers) and their discernibility in the structure. For

instance, take the following structure: its domain is {1, 2}; it has no constant elements or

functions; and it has a single binary relation {〈1, 1〉, 〈1, 2〉, 〈2, 1〉, 〈2, 2〉}. Then the ‘building

blocks’ of the model—the numbers 1 and 2—are absolutely discernible in the natural number

structure, but they are aren’t even weakly discernible in the structure described.

A comparison with Kripke semantics may be instructive. This too is a mathematical tool

that is neutral on the relevant philosophical questions but of great help in articulating and

examining these questions. Just as Kripke models provide an innocent way of articulating and

comparing what is involved in various metaphysical views about modality, our use of model

theory provides an innocent way of articulating and comparing what is involved in various

metaphysical views about the relation between identity and discernibility.

We are now in a position to appreciate a distinction, alluded to above, which is often over-

looked. Say that a property is identity-involving if its proper analysis involves the identity

relation. Say that a property is object-involving if its proper analysis makes appeal to par-

ticular objects. The identity-involving properties are those definable only in L=A or L=A∗ . The

object-involving properties are those definable only in LA∗ or L=A∗ . Here are some examples.

identity-involving not identity-involving

object-involving being Mercury being on Mercury

not object-involving being the innermost planet having an iron core

We do not try to adjudicate here the thorny issue of which entry in this table corresponds to

the correct explication of ‘qualitative’.
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5 The hierarchy of grades of discernibility

We noted above that the philosophical discernibility relations can be compared by how dis-

cerning they are. So can their logical counterparts introduced in Section 3. In this section,

we are interested only in discernibility in A relative to LA.

We have seen how a logical notion of discernibility D can be applied to any structure A

to yield a discernibility relation DA on the domain of A. For instance, the notion of weak

discernibility yields the relation WeakA of weak discernibility in A relative to LA. If D and

D′ are two notions of discernibility, we write D ⇒ D′ to mean that, for every structure A

and all elements a and b of A, if DA(a, b), then D′A(a, b). Thus, D′ 6⇒ D means that there

is a structure A with elements a and b such that D′A(a, b) holds, but not DA(a, b). We say

that one notion of discernibility D′ is more discerning than another D just in case D ⇒

D′ and D′ 6⇒ D. Then the following theorem is well-known from the literature:12

Theorem 2

• Int⇒ Abs⇒ Rel⇒Weak⇒ Dis

• Dis 6⇒Weak 6⇒ Rel 6⇒ Abs 6⇒ Int

Proof. First, we show that each is at most as discerning as the next. Suppose A is a structure

and a and b are elements of its domain. Then:

• If IntA(a, b), then AbsA(a, b). Obvious.

• If AbsA(a, b), then RelA(a, b). If ϕ(x) absolutely discerns a and b, then ψ(x, y) :=

ϕ(x) ∧ ¬ϕ(y) relatively discerns a and b.

• If RelA(a, b), then WeakA(a, b). If ϕ(x, y) relatively discerns a and b, then ψ(x, y) :=

ϕ(x, y) ∧ ¬ϕ(y, x) weakly discerns a and b.

• If WeakA(a, b), then DisA(a, b). The contrapositive follows immediately from Leibniz’s

Law.

Second, we show that each is strictly less discerning than the next.

12See, for instance, [Ketland, 2011], Section 3.2.
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• Let A be the edgeless graph with two vertices a and b:

a b

Then DisA(a, b), but not WeakA(a, b).

• Let A be the dumbbell graph with vertices a and b:

a oo // b

Then WeakA(a, b), but not RelA(a, b). (This is the graph-theoretic analogue of Max

Black’s spheres or entangled fermions.)

• Let A be the cyclic graph with three vertices a, b, and c:

a

����������

b // c

__>>>>>>>>

Then RelA(a, b), but not AbsA(a, b).

• Let A be one of the smallest non-trivial asymmetric undirected graphs with vertices a,

..., f :

a@@

���������� OO

��

b ^^

��<<<<<<<< c
��

^^========
oo //@@

����������
f

dOO

��
e

Then AbsA(a, b), but not IntA(a, b). (Cf. [Ladyman, 2007].)

This completes our proof. 2

The definitions of grades of discernibility can be stated equivalently using the model-

theoretic notion of a type. Suppose A is a structure and suppose a1, ..., an are elements of the

domain of A. As in the definition of grades of discernibility, we define the type of (a1, ..., an) in

13



A relative to LA. It is clear how the corresponding definition will go for the type of (a1, ..., an)

in A relative to L=A, and the type of (a1, ..., an) in A∗ relative to LA∗ or L=A∗ .

The type of (a1, ..., an) in A relative to LA is intended to include everything that can be

said truly of a1, . . . , an, taken in that order, using only the expressive resources found in LA.

Definition 3 (Type) Suppose a1, ..., an are in the domain of A. Then,

TypeA((a1, ..., an)) = {ϕ(x1, ..., xn) in LA : A |= ϕ(a1, ..., an)}

Note that this notion of type is relative to a structure and a language. If we keep the domain of

the structure fixed, but vary the constant elements, relations, and functions in it, the type of

a sequence of objects will generally vary as well. For instance, as the structure gains constant

elements and relations and functions, its associated language will gain expressive resources,

and the type will generally expand. Similarly, if we expand the expressive resources of the

language, the type will expand. Thus, the type of (a1, ..., an) in A relative to L=A will typically

contain more formulae than the type of (a1, ..., an) in A relative to LA
It follows quickly from the definitions above that:

Theorem 4 Suppose A is a structure and a and b are elements of its domain. Then

(1) a and b are absolutely discernible in A relative to LA iff TypeA(a) 6= TypeA(b).

(2) a and b are relatively discernible in A relative to LA iff TypeA(a, b) 6= TypeA(b, a).

(3) a and b are weakly discernible in A relative to LA iff TypeA(a, b) 6= TypeA(a, a).

6 Why weak discernibility is important

In this section, we ask how discerning is the relation of weak discernibility. In particular,

we try to answer the question: Is weak discernibility the most discerning non-trivial, natu-

ral discernibility relation? That is: we know that, in general, weak discernibility is not as

discerning as numerical distinctness (witness the edgeless graph with two vertices); but is it

the most discerning natural relation that is less discerning than numerical distinctness? We

explore this question by following two different strategies that might be expected to lead to

more discerning relations. But we will show that neither does, and nor does a combination

of the two strategies. We remind readers that we are not taking a stand on the expressive

adequacy of these languages, only exploring logical relations.
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6.1 Adding a constant for each object

Above, we saw that each of the discernibility relations in A relative to LA are distinct and

form a hierarchy ranging from the most discerning (WeakA) to the least discerning (IntA). We

might expect that, when we add to our language a constant for every element in the domain

of the structure in questions, all the discernibility relations will collapse into the numerical

distinctness relation. That is, we might expect that the discernibility relations IntA∗ , AbsA∗ ,

RelA∗ , and WeakA∗ all discern all pairs of distinct elements in the domain of A. But this

isn’t so. Consider for instance the edgeless graph with two vertices a and b. Then, as we saw

above, a and b are not weakly discernible in the language of graph theory without constants

or identity. But neither are they weakly discernible if we add to our language constants ā

and b̄ that are interpreted as naming a and b respectively.

If this seems surprising, it may be for the following reason. Given an object a, a haecciety

of a in A is a formula ψa(x) that holds of a, but not of any other object in A. If each element of

a structure is equipped with an haecceity in that structure, then every element is intrinsically

discernible from every other: if a 6= b, then a and b are intrinsically discerned by ψa(x) in

A. Thus, in the presence of haecceities for every object, all discernibility relations collapse

into numerical distinctness. It is often thought that, by introducing a constant to name a

given object, we thereby introduce a haecceity for that object, in which case all discernibility

relations relative to LA∗ would collapse into numerical distinctness. But this thought is

incorrect. In order to introduce haecceities for all objects, we would require constants for

every object as well as the identity relation: we could then define ψa(x) := x = a. Thus, all

discernibility relations relative to L=A∗ collapse into numerical distinctness. But without the

identity relation, there need not be all (or indeed any) haecceities, so there is no collapse. Here

we see the importance of distinguishing between discernibility by means of object-involving

properties and discernibility by means of identity-involving properties. We will encounter this

distinction again below.

So numerical distinctness is more discerning than weak discernibility relative to LA∗ . But

it might seem that, even if the new expressive resources provided by adding constants for every

object are not always sufficient to discern all pairs of distinct objects, they should nonetheless

be sufficient at least sometimes to discern more pairs of objects than are discerned by weak

discernibility relative to LA. The following perhaps surprising theorem shows that this is not

true: exactly the same pairs of objects are discerned by weak discernibility relative to LA, and
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by weak discernibility relative to LA∗ . Also surprising is that in A∗ relative to LA∗ , absolute,

relative, and weak discernibility all discern exactly the same elements.

Theorem 5 The following are equivalent:

(1) a and b are weakly discernible in A relative to LA.

(2) a and b are absolutely discernible in A∗ relative to LA∗.

(3) a and b are relatively discernible in A∗ relative to LA∗.

(4) a and b are weakly discernible in A∗ relative to LA∗.

Proof.

• (1) ⇒ (2). Suppose a and b are weakly discernible in A relative to LA. That is, there

is a formula ϕ(x, y) of LA with two free variables such that:

A |= ϕ(x, y)[a, b] and A 6|= ϕ(x, y)[a, a].

Then let ā be the constant in the signature of A∗ that names a. Then ϕ(ā, y) is a

formula of LA∗ with one free variable such that:

A∗ |= ϕ(ā, y)[b] but A∗ 6|= ϕ(ā, y)[a].

Thus, a and b are absolutely discernible in A∗ relative to LA∗ .

• (2) ⇒ (3); (3) ⇒ (4). Similar to analogous implications in Theorem 2.

• (4) ⇒ (1). Suppose a and b are weakly discernible in A∗ relative to LA∗ . That is, there

is a formula ϕ(x, y) in LA∗ with two free variables such that

A∗ |= ϕ(x, y)[a, b] and A∗ 6|= ϕ(x, y)[a, a]

Let d1, ..., dm be all and only those elements of the domain of A such that the constants

d̄1, ..., d̄m that name them occur in the formula ϕ(x, y). Then

A∗ |= ϕ(x, y, d̄1, ..., d̄m)[a, b] and A∗ 6|= ϕ(x, y, d̄1, ..., d̄m)[a, a]
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Now, the formula

ψ(x, y) := ∃z1...∃zm(ϕ(x, y, z1, ..., zm) ∧ ¬ϕ(x, x, z1, ..., zm))

is in LA. Moreover, it is easy to verify that we have A∗ |= ψ(x, y)[a, b] but A∗ 6|=

ψ(x, y)[a, a] and thus also A |= ψ(x, y)[a, b] and A 6|= ψ(x, y)[a, a]. This shows that a

and b are weakly discernible in A relative to LA.

This completes our proof. 2

The theorem shows that weak discernibility is surprisingly discerning. Indeed, it discerns

exactly as much as can be discerned in a language equipped with a constant for every object.

Does this undermine the claim that, by appealing to weak discernibility, we can save PII from

the apparent mathematical and physical counterexamples? Does it provide ammunition for

those philosophers—for instance, those mentioned in footnote 7—who have been suspicious

of such philosophical uses of weak discernibility? One might think that, since it is illegitimate

to discern two objects by appealing to a relation defined by a formula that involves singular

reference to either object, and since it turns out that this is possible exactly when those

objects can be weakly discerned without such resources, then it is illegitimate to say that two

objects are discernible in a structure A when they are only weakly discernible in A relative to

LA. But of course the argument could be run the other way: the legitimacy of discernibility

relative to LA∗ might be inferred from the alleged legitimacy of weak discernibility relative

to LA by means of the theorem just proved.

We have seen that we cannot define a more discerning relation than weak discernibility by

adding constants to our language. Anything we can discern in any way by adding constants

was already weakly discernible before we added them. In the next section, we explore a

different strategy for finding a weaker discernibility relation than weak discernibility. However,

first, we consider a question that arises naturally from the results in this section.

6.2 Substitution salva veritate

We wish to know whether there is a natural discernibility relation that is less discerning than

numerical distinctness and more discerning than weak discernibility relative to LA. Recall the

definition of that discernibility relation: a and b are weakly discernible in A relative to LA if

there is a formula ϕ(x, y) in LA such that A |= ϕ(a, b) and A 6|= ϕ(a, a). But why allow only
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formulae with two free variables to do the discerning? Perhaps we can find a more discerning

relation if we allow also formulae ϕ(x, y, z) with three free variables. For instance, we might

say that a and b are very weakly discernible in A relative to LA if there is ϕ(x, y) in LA such

that A |= ϕ(a, b) and A 6|= ϕ(a, a) or if there is ϕ(x, y, z) in LA such that A |= ϕ(a, b, a) and

A 6|= ϕ(b, a, a). In fact, why choose that ordering of the a’s and b’s in the three-place formula?

And why not allow four-place formulae as well as two- and three-place? Indeed, why not

allow formulae of any arity? Perhaps there is an infinite hierarchy of discernibility relations

between numerical distinctness and weak discernibility, each of which is determined by the

arity of formula that is allowed to discern the objects, and the order in which the objects

must appear in those formulae. If this is so, the most discerning relation in this hierarchy will

be the relation that permits any formula in LA to discern the objects, and allows the objects

to appear in any order. We call this the very weak discernibility relation.

Definition 6 (Very weak discernibility) Suppose A is a structure and a and b are ele-

ments of the domain of A. Then

• a and b are very weakly discernible in A relative to LA (written VWeakA(a, b)) if there

is ϕ(x1, ..., xn) in LA and c1, ..., cn, d1, ..., dn in the domain of A such that each ci

and di is either a or b and

A |= ϕ(c1, ..., cn) and A 6|= ϕ(d1, ..., dn)

Does this discernibility relation lie strictly between numerical distinctness and weak discerni-

bility? The following theorem shows that it does not. Moreover, it shows that the infinite

hierarchy of discernibility relations described in the previous paragraph collapses with it into

weak discernibility.

Theorem 7 The following are equivalent:

(1) a and b are weakly discernible in A relative to LA.

(2) a and b are very weakly discernible in A relative to LA.

Proof.

• (1) ⇒ (2). Trivial.
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• (2) ⇒ (1). Suppose a and b are very weakly discernible in A relative to LA. That is,

there is ϕ(x1, ..., xn) and c1, ..., cn, d1, ..., dn ∈ {a, b} such that

A |= ϕ(c1, ..., cn) and A 6|= ϕ(d1, ..., dn)

Then construct ψ(x, y) as follows. First, let ϕc be obtained from ϕ by replacing each free

variable xi in ϕ by the free variable x if ci = a and by the free variable y if ci = b. Thus,

A |= ϕc(x, y)[a, b]. Next, let ϕd be obtained from ϕ by replacing each xi by x if di = a

and by y if di = b. Thus, A 6|= ϕd(x, y)[a, b]. Then let ψ(x, y) := ϕc(x, y) ∧ ¬ϕd(x, y).

Then:

A |= ψ(x, y)[a, b] and A 6|= ψ(x, y)[a, a].

So a and b are weakly discernible in A relative to LA.

This completes our proof. 2

Thus, again, we have failed to identify a discernibility relation that lies strictly between

numerical distinctness and weak discernibility.

Let’s finally consider whether one might do better by combining the strategy of this section

with that of the previous section. That is, is very weak discernibility relative to LA∗ more

discerning than weak discernibility relative to LA? The answer turns out to be negative, as

can be seen by a fairly straightforward adaptation of the proof of Theorem 5.

6.3 Discerning using atomic formulae

The results of the previous two sections suggest that weak discernibility relative to LA is

indeed the most discerning natural discernibility relation after numerical distinctness. We

will now try to give this idea more precise technical content.

Theorem 8 The following are equivalent:

(1) a and b are weakly discernible in A∗ by an atomic formula of LA∗ or a negation thereof.

(2) a and b are weakly discernible in A∗ by a quantifier-free formula of LA∗.

(3) a and b are weakly discernible in A∗ relative to LA∗.

Proof.
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• (1) ⇒ (2); (2) ⇒ (3). Trivial.

• (3) ⇒ (1). The contrapositive is established by induction on the complexity of the

formulae in LA∗ . The atomic case is given, and the inductive step is straightforward.

This completes our proof. 2

If one wants the discerning properties to be ‘natural’ and is concerned that ‘naturalness’ may

be lost in the transition from atomic formulae to logically complex ones, then this theorem

addresses one’s concern.

By Theorems 7 and 8, we have that weak discernibility relative to LA discerns exactly the

elements of the domain of A that are discerned by the atomic part of LA∗ . This fact gives

us a robust sense in which weak discernibility is the most discerning natural discernibility

relation after numerical distinctness.

6.4 Discernibility in the object language

Our discernibility relations have so far been defined using the meta-language: their definitions

have involved quantification over formulae as well as the satisfaction relation between formulae

and models. This raises the question whether we can define any of our discernibility relations

in the object language. We now show that this is possible for weak discernibility in a restricted

class of languages.

We begin with a definition due to Hilbert and Bernays [Hilbert and Bernays, 1934].

Definition 9 (Hilbert-Bernays discernibility) Suppose A is a structure containing only

finitely many relations. Then, for each n-ary relation symbol R in the signature of A, define

IndR(x, y) := ∀z1 . . . ∀zn−1((R(x, z1, . . . , zn−1)↔ R(y, z1, . . . , zn−1) ∧ . . .

. . . ∧R(z1, . . . , zn−1, x)↔ R(z1, . . . , zn−1, y))

Next, define

HBA(x, y) := ¬

(∧
R

IndR(x, y)

)

where R ranges over the relation symbols in the signature of A.

We say that a and b are Hilbert-Bernays discernible in A if A |= HBA(a, b).
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We can now prove that, for the languages for which it is defined, Hilbert-Bernays discernibility

is equivalent to weak discernibility.13

Theorem 10 The following are equivalent:

(1) a and b are Hilbert-Bernays discernible in A.

(2) a and b are weakly discernible in A relative to LA.

Proof.

• (1) ⇒ (2). Suppose A |= HBA(a, b). It is clear that A 6|= HBA(a, a). Thus, since

HBA(x, y) is a formula in LA, a and b are weakly discernible in A relative to LA.

• (2) ⇒ (1). Suppose a and b are weakly discernible in A relative to LA. Then Theorem

8 ensures that a and b are discernible by an atomic formula in LA∗ . It is easy to see

that it follows from this that A |= HBA(a, b).

This completes our proof. 2

7 Discernibility in languages with identity

In section 6.1, we considered what more can be discerned if we allow the discerning formulae to

use constants for each element of the domain. We noted that the discernibility relations do not

collapse into numerical distinctness because, in the absence of the identity relation, we cannot

use the constants to define haecceities for each object. In this section, we ask what happens

if we add the identity relation, but no constants. Prima facie, this may seem philosophically

inappropriate and technically in danger of collapsing all notions of discernibility to numerical

distinctness. However, we will now see that both worries are unfounded. To allay the latter

fear, we note the following analogue of Theorem 2:

Theorem 11

• Int= ⇒ Abs= ⇒ Rel= ⇒Weak= ⇒ Dis

• Dis⇒Weak= 6⇒ Rel= 6⇒ Abs= 6⇒ Int=

13Our notion of Hilbert-Bernays discernibility corresponds to [Ketland, 2011]’s notion of ‘first-order indis-
cernibility’, and the following theorem, to his Theorem 3.17.
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Proof. The proof is exactly the same as the proof of Theorem 2. Dis⇒Weak= since x 6= y

is a formula in L=A. 2

Next we investigate the logical relations between weak, relative, and absolute discernibility

in A relative to LA and in L=A.

Theorem 12 Each discernibility relation relative to LA is strictly less discerning than its

counterpart relative to L=A.

Proof. Trivially, Abs ⇒ Abs=, Rel ⇒ Rel=, and Weak ⇒ Weak=. The following graph-

theoretic example shows that Abs= 6⇒ Abs and Rel= 6⇒ Rel:

c1 c′1 c′2

a

OO

b

^^========

@@��������

Here we have Abs=A(a, b) and Rel=A(a, b), but not AbsA(a, b) or RelA(a, b). The problem is

that, without the identity relation, there is no way of saying that a is related to one object

while b is related to two. However, if we add identity to this language, it is possible to say

this.

In the example of the edgeless graph with two vertices a and b, we have Weak=
A(a, b) but

not WeakA(a, b). 2

Does the notion of discernibility in A relative to L=A have any philosophical interest?

If the philosophical project is to study how identity facts ‘supervene on’ or are ‘grounded

in’ non-identity-involving facts, then discernibility relative to L=A is clearly not the relevant

notion, since this language simply presupposes the relation we are trying to ground. This

sort of project requires that the discernibility take place in a language that only expresses

non-identity-involving facts.

However, studying discernibility relative to L=A may still be of some interest, both philo-

sophically and for the sake of technical completeness. There is at least one notion of identity

for which discernibility relative to L=A is relevant, namely ‘identity’ in the sense of ‘defining

characteristics’. For instance, sociologists may say that it is part of someone’s identity that

she is the mother of three children or the murderer of twelve innocent victims. Such claims

are naturally expressed in L=A.
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The following diagram summarizes our results so far (together with the results of Corollary

21 below). This represents all the entailment relations between the various discernibility

relations relative to LA, L=A, and LA∗ :

Abs=A // Rel=A

++XXXXXXXXXXXXXXXXXXXXXXXXXX

WeakA/VWeakA/AbsA∗/RelA∗/WeakA∗/VWeakA∗/HBA
// Weak=

A/DisA

AbsA //

OO

RelA

33ffffffffffffffffffffffffff

OO

8 Quotients

The results of the previous sections suggest that there is a sense in which weak discernibility is

the most discerning relation that the structure can ‘see’. In this section, we make this precise

in a particular way. In what follows, when a and b are not weakly discernible in A relative to

LA, we say that they are utterly indiscernible in A and write a ≈A b. Throughout this section

and the next, we assume that LA contains no individual constants and no function symbols.

The associated structures are called relational.

We begin by generalizing an observation of Ketland’s (Theorem 3.12, [Ketland, 2011]).

Ketland shows that, if a structure A contains pairs of objects that are utterly indiscernible

in A, then there is another structure Ā in which any two utterly indiscernible object are

‘identified’, and such that exactly the same sentences of LA are true in A as are true in Ā:

when two structures have the property of making exactly the same sentences of LA true, we

say that they are elementarily equivalent.

We note that Ketland’s result remains true if we seek a structure Ā in which not all pairs

of utterly indiscernible elements are identified, but only those pairs that both belong to the

same set Ci from a family {Ci ⊆ dom(A) : i ∈ I} of disjoint subsets of dom(A), where any

two elements of Ci are utterly indiscernible.

Theorem 13 Suppose that A is a relational structure. Suppose that F = {Ci ⊆ dom(A) :

i ∈ I} is a family of disjoint subsets of the domain of A such that a, b ∈ Ci implies a ≈A b.

Then there is a structure Ā and a surjective function τ : dom(A) � dom(Ā) such that:

(1) For all a, b ∈ dom(A), then τ(a) = τ(b) iff there is i ∈ I such that a, b ∈ Ci.
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(2) A and Ā are elementarily equivalent with respect to LA.

Proof. Our proof employs the notion of a quotient structure. We develop this notion quite

generally at first; then we apply our findings to prove our generalization of Ketland’s theorem.

Let A be a structure. An equivalence relation ∼ on its domain is said to be an LA-

congruence on A if it respects the interpretation of the predicates of LA, in the sense that

for any n-place predicate P in LA and objects a1, . . . , an, a1, . . . , a
′
n ∈ A with ai ∼ a′i, we

have: A |= P (a1, . . . , an) iff A |= P (a′1, . . . , a
′
n). When ∼ is an LA-congruence, we define the

quotient of A under ∼ (written A/ ∼) as follows:

(a) The domain of A/ ∼ is the set of equivalence classes of ∼ in dom(A): that is, {[a] : a ∈

dom(A)} where [a] = {b ∈ dom(A) : a ∼ b}.

(b) If R is a relation in A, then we define R∼ in A/ ∼ as follows: R∼ = {([a1], ..., [an]) :

(a1, ..., an) ∈ R}. This is well defined because ∼ is a congruence.

Then we have

(1′) If a, b ∈ M , then [a] = [b] iff a ∼ b. Thus, the function τ : a 7→ [a] is surjective and

identifies all and only objects that are related by ∼.

(2′) By induction on the complexity of formulae, it is straightforward to see that A and

A/ ∼ are elementarily equivalent.

Thus, to establish claims (1) and (2) of our generalization of Ketland’s theorem, it suffices to

show that the relation

x ∼F y := (∃i ∈ I)(x, y ∈ Ci) ∨ x = y

is an LA-congruence. By the disjointness of the Ci, it follows that ∼F is an equivalence

relation. And by Theorem 8, we know that ∼F respects the interpretation of the predicates

of LA. Thus, we let Ā = A/ ∼I and τ : a 7→ [a]. 2

This result is particular to weak discernibility. If we required only that any a, b ∈ Ci

not be relatively discernible, then the result would not hold. The reason is that relative

indiscernibility does not make ∼F into a congruence. This is witnessed by the dumbbell

graph, letting the only Ci be the set {a, b} that contains both vertices. Then we have a ∼F b,

as well as Eab and Eba, but not Eaa or Ebb. Similarly for absolute discernibility.
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What about the converse of the theorem? Suppose that A and A′ are elementarily equiv-

alent structures and τ : dom(A) � dom(A′) is a surjective function that identifies a and

b and nothing else. Does it follow that a ≈A b? The answer turns out to be negative, as

is witnessed by the following two structures A (on the left) and A′ (on the right) and the

surjective function τ such that τ(a1) = a′ = τ(a2), τ(bi) = τ(b′i), and τ(c) = c′:

a1 // a2 a′ XX

b1 // b2 b′1
// b′2

c ZZ c′ XX

For A and A′ are elementarily equivalent, yet a1 and a2 are weakly discernible in A.

However, a reverse of the model construction is possible and has interesting philosophical

consequences. In our generalization of Ketland’s result, we showed that, for any structure A,

there is always an elementarily equivalent structure Ā in which sets of utterly indiscernible

objects are identified. In the following theorem, we show that there is always an elementarily

equivalent structure Ã that replaces any chosen elements from the domain of A with any

desired number of utterly indiscernible objects.

Theorem 14 Suppose that A is a relational structure. Suppose {κi : i ∈ I} is a family of

cardinal numbers indexed by some I ⊆ dom(A). Then there is a structure Ã with the same

signature as A, a family F = {Ci ⊆ dom(Ã) : i ∈ I} of disjoint subsets of dom(Ã) indexed by

I, and a surjective function τ : dom(Ã) � dom(A) such that:

(1) for all i ∈ I, |Ci| = κi;

(2) for all a, b ∈ dom(Ã), if there is i ∈ I such that a, b ∈ Ci, then a ≈Ã b;

(3) for all a, b ∈ dom(Ã), then τ(a) = τ(b) iff there is i ∈ I such that a, b ∈ Ci;

(4) A and Ã are elementarily equivalent.

In fact, if the operation B 7→ B̄ is defined as in Theorem 13, then ¯̃A is isomorphic to A.

Proof. We construct dom(Ã) as follows. First, let F = {Ci : i ∈ I} be a family of disjoint

sets that are also disjoint from dom(A) and such that |Ci| = κi for each i ∈ I. This gives (1).
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Let dom(Ã) be (A − I) ∪
⋃

i∈I Ci. Suppose P is an n-place predicate symbol in LA. Define

Ã so that Ã |= P (a1, . . . an) iff A |= P (a′1, . . . , a
′
n), where for each j, either aj ∈ A − I and

a′j = aj , or aj ∈ Ci for some i ∈ I and a′j = i. Note that if a, b ∈ Ci, then no atomic formula

or negation thereof weakly discerns a and b in Ã∗ (by definition). By Theorem 8, a and b are

weakly indiscernible in Ã∗. By Theorem 5, they are weakly indiscernible in Ã. This proves

(2). Now consider τ : Ã→ ¯̃A as defined in Theorem 13. It is straightforward to show that ¯̃A

is isomorphic to A. Hence (3) and (4) follow easily. 2

Theorem 14 has some philosophical significance: it reveals a limitation on the sort of facts

that we might come to know by empirical investigation. If all of our empirical evidence is

expressible in LA, then Theorem 14 tells us that this evidence will never help us distinguish

between two models where one is obtained from the other by adding many utterly indiscernible

objects in place of a single object at various points. In order to distinguish two such models,

we must appeal to theoretical considerations such as ontological parsimony.14

Thus, the upshot of this Theorem 14 is similar to the upshot of the Löwenheim-Skolem

theorems. The latter tell us that, if our empirical evidence is expressible in L=A, then it will

never help us distinguish between two models of different infinite cardinality (if there are any

such models). In order to distinguish two such models, we must appeal to explanatory power

or simplicity or some other theoretical virtue. The argument from Theorem 14 is both more

and less general than this argument. On the one hand, it requires the stronger assumption

that our empirical evidence is expressible in LA. On the other hand, it applies equally to

finite models and to infinite ones, and it provides greater control over the construction of

alternative models.15

So what of the assumption that our empirical evidence is expressible in LA? Perhaps it

will be objected that some of our evidence can only be expressed in L=A. If this is conceded,

our argument fails. However, it is not clear that the empiricist should be happy with the

idea that some of the evidence we obtain can only be expressed using a primitive identity

predicate. Identity facts, the empiricist might hold, must be inferred from our theory; they

cannot be given to us in our evidence.

14See [Baker, 2003] for one such attempt.
15Indeed, Theorem 14 can be read as an Upwards Löwenheim-Skolem theorem that applies equally to finite

models, provided that the elementary equivalence that is required is defined relative to LA rather than to L=
A.

That is, Theorem 14 shows that, given a theory in LA with a model of cardinality κ, where κ is finite or
infinite, this theory has an elementarily equivalent model of cardinality λ for all λ > κ.
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9 Discernibility and symmetries

A symmetry of a model is a permutation of the elements of that model that ‘respects’ the

properties the objects have and the relations in which they stand.

Definition 15 (Symmetry) Suppose A is a relational structure.

(a) A permutation of A is a bijection π : dom(A) → dom(A). We denote by πab the

permutation that swaps a and b and leaves everything else unchanged.

(b) A permutation π of A is a symmetry of A if, for all relation symbols R in A and

elements a1, ..., an of the domain of A, Ra1...an iff Rπ(a1)...π(an).

Symmetries are usually called automorphisms in model theory. Here are two examples. In

Max Black’s example considered above, a permutation that swaps the two spheres is a symme-

try because it ‘respects’ the structure of the universe of that example. Similarly, in Leibniz’s

example, if the universe is infinite in extent, then to move every point one metre to the left

would be to effect a permutation of the points that is a symmetry.

A straightforward induction on the complexity of formulae gives the following basic result:

Lemma 16 Suppose π is a symmetry of A. Then, for all ϕ(x1, ..., xn) in LA or L=A, and all

a1, ..., an ∈M we have:

A |= ϕ(a1, ..., an) iff A |= ϕ(π(a1), ..., π(an))

It is often thought that there is a close connection between symmetries and discernibility

relations.16 In this final section, we explore this connection. We show that facts about utter

indiscernibility entails the existence of symmetries, which in turn entails facts about objects

not being relatively and absolutely discernible, but that the converse implications generally

fail. The connection between symmetries and discernibility relations is thus not as close as

one might imagine.

16This is suggested by much discussion of the Burgess-Keränen objection to ante rem structuralism, according
to which this form of structuralism is incompatible with structures containing distinct objects that are not
absolutely discernible, such as the structure of the complex field, where the two square roots of −1 are not
absolutely discernible. Although the problem is thus officially concerned with the existence of indiscernible
objects, it is frequently described as one of non-trivial automorphisms (e.g. in several of the discussions
of mathematical structuralism cited in footnote 4). Some authors even suggest that the existence of an
automorphism of a structure that swaps a and b is equivalent to the claim that a and b are not absolutely
discernible [Keränen, 2001, p. 318] (although see also p. 323).
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We begin by providing a sufficient condition for a permutation π to be a symmetry.17

Theorem 17 Suppose A is a relational structure. If π is a permutation of A and a ≈A π(a)

for all a ∈ dom(A), then π is a symmetry of A. But the converse does not hold in general.

Proof. We establish the first claim by observing that for any relation R in A and any objects

a1, . . . , an from the domain of A we have:

Ra1 . . . an ⇔ Rπ(a1)a2 . . . an ⇔ . . .⇔ Rπ(a1) . . . π(an)

The dumbbell graph provides a counterexample to the converse. For the permutation πab is

a symmetry of this graph, but we have a 6≈A b = πab(a). 2

An important corollary of this:18

Corollary 18 Suppose a, b ∈ dom(A) and a ≈A b. Then πab is a symmetry of A.

We now turn to necessary conditions for π to be a symmetry. But first a useful definition.

Definition 19 (Symmetric elements) Let a and b be elements of the domain of some

relational structure A.

(a) If π is a symmetry of A such that π(a) = b, we say that a and b are symmetric relative

to π.

(b) If π is a symmetry of A such that π(a) = b and π(b) = a, we say that a and b are fully

symmetric relative to π.

(c) We say that a and b are (fully) symmetric iff there is a symmetry π of A relative to

which they are (fully) symmetric.

The first two results of the following theorem are well-known from the philosophical liter-

ature on identity and indiscernibility.19 The latter two are familiar from the model theory

literature, though only recently noted by philosophers. They were brought to our attention

independently by Butterfield and Caulton and Kate Hodesdon—see Comment (2), §2.2.2,

[Caulton and Butterfield, ta].

17See all Comment (1), §2.2.2, [Caulton and Butterfield, ta].
18See also [Ketland, 2011], Theorem 3.23.
19Our Theorem 20(1) is Theorem 1 of [Caulton and Butterfield, ta]; the first half of our Theorem 20(4)

is Theorem 2 of [Caulton and Butterfield, ta]; the first half of our Theorem 20(3) is noted in the discussion
following Theorem 2 of [Caulton and Butterfield, ta].
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Theorem 20 Let a and b be elements of the domain of some relational structure A.

(1) If a and b are symmetric, then a and b are not absolutely discernible in A relative to

L=A.

(2) If a and b are fully symmetric, then a and b are not relatively discernible in A relative

to L=A.

(3) The converses of (1) and (2) do not hold in general. That is, it is not the case that,

for every structure A, if a and b are not absolutely (relatively) discernible in A, then a

and b are (fully) symmetric.

(4) The converses of (1) and (2) do hold if dom(A) is finite.

Proof. (1) and (2) are immediate corollaries of Lemma 16. To prove (3), let L=A be the

first-order language with identity with a single two-place non-logical predicate <. Let A be

the structure obtained by taking the disjoint union of the structures 〈Q, <Q〉 and 〈R, <R〉

(where ‘<’ is interpreted as the union of the relations <Q and <R). Let a1, . . . , an, a
′
1, . . . , a

′
n

be rational numbers from either Q or R such that, for every i, ai and a′i are the same rational

number, just one from Q and the other from R. Then an easy induction on complexity of

formulae show that for every φ from L=A we have:

A |= φ(a1, . . . , an) iff A |= φ(a′1, . . . , a
′
n)

This entails that 0Q and 0R are not relatively (and thus also not absolutely) discernible in A

relative to L=A. However, cardinality considerations show that there is no symmetry π of A

such that π(0Q) = 0R. This establishes the two claims that make up (3). For the proof of

(4), we refer the reader to [Caulton and Butterfield, ta]. 2

An interesting consequence of Corollary 18 and Theorem 20(1) and (2) is the following:

Corollary 21 If a and b are absolutely or relatively discernible in A relative to L=A, then a

and b are weakly discernible in A relative to LA.

Proof. Suppose a and b are not weakly discernible in A relative to LA. Then, by Corollary

18, πab is a symmetry of A. Thus, by Theorem 20(1) and (2), a and b are not absolutely

discernible nor relatively discernible in A relative to L=A. 2
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Let’s return to our question about the relation between the notion of a symmetry and our

three notions of discernibility. An answer is provided by our Theorems 17 and 20, which show

that the former notion cannot in general be characterized in terms of any of the latter notions,

except in the case of finite structures, where two objects cannot be absolutely (relatively)

discerned just in case they are (fully) symmetric. Our results thus provide a salutary reminder

that the connection between these two families of notions isn’t as straightforward as one might

initially think.

On reflection, this loose connection should not be too surprising. The two families of

notions track completely different philosophical ideas. The discernibility notions are con-

cerned with the extent to which the dyadic relations of identity and distinctness are fixed or

determined by relations expressible in a language LA or L=A. These questions arise within

one particular structure, which represents a way the world could be. The notions of dis-

cernibility are in this sense concerned with ‘intra-world’ matters. By contrast, permutations

are concerned with what happens when objects change their positions in a structure, and

symmetries are just the special case where this change of positions preserves all structural

relations. Permutations and symmetries raise hard philosophical questions about the extent

to which objects are independent of their positions in a relational structure. If objects are

independent in this way, then the result of carrying out a non-trivial permutation will result

in a new and distinct way the world could be; and if not, not. The philosophical questions

raised by permutations and symmetries are thus transworld questions, concerned with the

identification of objects across different possible worlds or situations.

10 A curious fact about relative discernibility

So far, we have defined and investigated a small number of different discernibility relation,

many of which have been discussed in the literature. But we have not offered any general

definition of a discernibility relation; nor has anyone else, as far as we are aware. Can we do

better?

A natural minimal requirement is that any notion of indiscernibility should give rise

to an equivalence relation on the domain of any structure to which the notion is applied.

This would entail a minimal requirement on any notion D of discernibility, namely that

the discernibility relation DA to which D give rise when applied to a structure A be the

complement of an equivalence relation on A. Our final theorem shows that, while absolute and
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weak discernibility satisfy this proposed minimal requirement, relative discernibility rather

surprisingly does not.

Theorem 22 (1) The relations AbsA and WeakA of absolute and weak discernibility in A

relative to LA are complements of equivalence relations on the domain of any structure

A; and likewise for absolute and weak discernibility relative other other languages.

(2) There are structures A such that the relations RelA and Rel=A of relative discernibility in

A relative to respectively LA and L=A are not the complements of an equivalence relation

on the domain of A.

Proof. By Theorem 5, we have that WeakA = AbsA∗ and that Weak=
A is just the relation Dis

of distinctness. And by Theorem 4, the absolute discernibility of a and b in some structure

relative to some language is a matter of a and b having distinct types in this structure

relative to this language. Since sameness of types is an equivalence relation, so are the

relevant relations of not being absolutely discernible, which establishes (1). For (2), consider

the following graph:

d′

��

c′oo

a′
��

??�������
// b′

��

��

??�������

d // c

OO

a

OO

��

??~~~~~~~~
b

��

??��������oo

A routine verification establishes that the following two permutations:

(ac)(bd)(a′c′)(b′d′) and (bc)(a′d′)(b′d)(ac′)

are symmetries of the graph. Theorem 20(2) then ensures that neither a and c, nor b and

c, are relatively discernible in LA or L=A. However, a and b are relatively discerned by an

edge of the graph. So it follows that the relation of not being relatively discernible fails to be

transitive. (However, the relation is easily seen to be reflexive and symmetric.) 2

Theorem 22 shows that the proposed minimal requirement on the notion of a discernibility

relation disqualifies relative discernibility from being a genuine form of discernibility. One
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response to the theorem is thus to abandon the proposed requirement. A more hard-nosed

response would be to uphold the requirement and the ensuing verdict on relative discernibility,

despite the fact that this would be a revision of existing practice, which regards relative

discernibility as a genuine form of discernibility. We shall not here defend one of the two

responses; the issue is anyway in part semantic.

However, we observe that the revisions required by the hard-nosed response would be

comparatively modest. For relative discernibility is not nearly as important as absolute or

weak discernibility. Absolute discernibility is philosophically important if one wants a monadic

notion of discernibility, as discussed in Section 2. And if one is willing to accept a dyadic

notion, one may as well go for weak discernibility rather than relative. From a technical

point of view as well, absolute and weak discernibility are more important than relative.

The two former notions are connected with the important notion of the type of an object

in a structure relative to languages respectively with and without constants. Moreover, our

results in Section 6 highlighted the importance of weak discernibility as the most discerning

non-trivial discernibility relation.

We conclude that little would be lost if philosophers were to pay less attention to relative

discernibility.

11 Conclusion

A philosophical question about identity and discernibility ‘factorizes’ into two parts: first, a

philosophical question about the adequacy of a formal language to a particular class of prop-

erties and relations in the world; and second, a mathematical question about the discernibility

of objects in this language. We hope to have shed some light on the latter sort of question

by proving various new theorems and extending some old ones.
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